Принцип работы грозозащиты
Во время грозы мощные разряды электричества пронизывают воздух. Это – молнии. Они могут быть восходящими, нисходящими и межоблачными. Наиболее опасны первые две разновидности, так как разряды идут сверху вниз, прицельно в здание, или с поверхности земли к облаку.
Во время грозы между тучами и поверхностью земли формируется заряд электричества. Величина его может иметь огромные значения. Кроме прямого попадания молнии в здание, существует также опасность выгорания начинки электрооборудования и повреждения сети от резкого перепада потенциалов. Опасность попадания молний грозит как жилым постройкам, так и предприятиям промышленного назначения и объектам инфраструктуры. Такой природный феномен может сопровождаться силой тока, достигающей несколько сотен тысяч ампер. Последствия могут быть как первичными, от самой грозы и непосредственно молнии, так и вторичными.
Предотвратить возможный пожар и разрушение электроники в результате попадания молнии помогает комплекс мер, нацеленных на обеспечение молниезащиты здания. Конструкция системы должна соответствовать нормативам уровней защищенности объектов от атмосферного электричества.
Принципы работы
Основной принцип приемника молнии заключается в том, что она ударяет обычно в наиболее высокие здания и деревья. Именно поэтому устройство помещается в самой наивысшей точке постройки, чтобы принять удар стихии на себя и обезопасить здание от громадного заряда электрического тока и напряжения. Наивысшей точкой здания может быть как элемент кровли, дымоход, телевизионная антенна, так и высокое дерево, находящееся недалеко от жилого дома.
Система предотвращает разрушение электрических линий и приборов путем их отключения от сети во время колебания электромагнитного поля. В конструкции грозозащитных систем применяются устройства разного типа, но принцип работы у них один и тот же – при появлении высокого напряжения система отключает цепь от общей электросети. Устройства грозозащиты содержат предохранители, которые сгорают быстрее электроприборов, но это происходит довольно редко, поскольку большинство колебаний электромагнитного поля гасит заземление. Земля в системе необходима для переноса заряда, в противном случае он будет скапливаться на корпусе прибора или оборудования и может повлечь за собой поражение человека разрядом электрического тока.
Грозозащита и заземление
Заземление является важной частью системы. Именно через него электрический разряд, пойманный молниеприемником, отводится в землю. Элементы системы заземления находятся по всему зданию, а металлические элементы у основания отводят разряд глубоко в землю. Последняя должна быть заранее проверена. Это важно для предотвращения скопления заряда на корпусе прибора или детали. Следует избегать заземления канализационных и отопительных труб, так как последние обладают повышенным сопротивлением.
При этом «зануление» не требуется. Так как понятие «ноль», представляет собой шину, служащую для того, чтобы замкнуть цепь и провести ток дальше. «Зануление» в системе грозозащиты приводит к частым ее срабатываниям, к ложным призывам к работе. В итоге это сопровождается необходимостью прерывания работы устройства. Введение «нуля» допускается только в случаях, когда нельзя или нет возможности заземления.
Устройство грозозащиты
Модуль грозозащиты состоит из молниеотводов и дополнительных устройств, которые обеспечивают защиту приборов. В самых общих чертах схема молниеотвода состоит из трех элементов: приемник, токоотвод и заземлитель. Наличие молниеотвода позволяет отвести разряд атмосферного электричества от самого здания в землю и предотвратить возгорание и другие негативные последствия непосредственного контакта с молнией. Это достигается за счет возникающей разницы потенциалов, при котором диод замыкается и это приводит к отведению напряжения в область земли. Место диода может занимать любое другое защитное средство. При проектировании молниеприемника необходимо учитывать такие параметры, как общая площадь территории, высота здания, требующих защиты, соседних деревьев, тип кровли дома.
Среди устройств, которые обеспечивают подобную защиту приборов, можно упомянуть:
- варисторы – разновидность резисторов, которые уменьшают свое сопротивление при резком скачке напряжения;
- супрессоры – стабилизаторы, которые открываются при повышении напряжения;
- газонаполненные разрядники – инертный газ внутри баллончиков уменьшает сопротивление;
- плавкие предохранители – теряют способность проводить ток при скачках напряжения.
Устройства грозозащиты применяют как в электрических цепях, так и на линиях передачи сигналов.
Классификация грозозащиты
Существует 3 класса приборов грозозащиты:
1 класс (категория В) – обеспечивают защиту при прямом попадании молнии.
2 класс (категория С) – монтируются в распределительные щиты в качестве второго звена защиты, или для обеспечения безопасности токораспределяющих сетей.
3 класс (категория Д) – периферийные устройства, которые обеспечивают защиту приборов.
Расстояние между периферическими устройствами и самими приборами не должно превышать 10-15 метров.
В выборе грозозащиты необходимо склоняться к фирменным, а не самодельным устройствам. Так как последние отличаются меньшей степенью защиты.
Профессиональные устройства грозозащиты имеют:
- Наименьшие сопротивления.
- Работоспособность сохраняется вне зависимости от падения напряжения.
- Способность выносить большие нагрузки.
Также довольно часто самодельные или некачественные системы защиты могут не справляться с прямым попаданием молнии или же с высоким напряжением. Они лишь позволяют снизить процент вреда оборудованию, но не могут его защитить на все 100%. Поэтому недорогие устройства могут быть использованы лишь на время, пока нет возможности установить качественное оборудование.
В настоящее время введение в проектирование общественных зданий и частных домов установки системы грозозащиты необходимо для того, чтобы обезопасить дом, оборудование и людей от возможного риска возгорания и его последствий. Качественное современное оборудование, проектирование и правильные монтажные работы позволят чувствовать себя в своем доме как в настоящей крепости.